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Abstract. We numerically study the wetting (adsorption) transition of a polymer chain on a disordered
substrate in 1+1 dimension. Following the Poland-Scheraga model of DNA denaturation, we use a Fixman-
Freire scheme for the entropy of loops. This allows us to consider chain lengths of order N ∼ 105 to 106,
with 104 disorder realizations. Our study is based on the statistics of loops between two contacts with the
substrate, from which we define Binder-like parameters: their crossings for various sizes N allow a precise
determination of the critical temperature, and their finite size properties yields a crossover exponent
φ = 1/(2 − α) � 0.5. We then analyse at criticality the distribution of loop length l in both regimes
l ∼ O(N) and 1 � l � N , as well as the finite-size properties of the contact density and energy. Our
conclusion is that the critical exponents for the thermodynamics are the same as those of the pure case,
except for strong logarithmic corrections to scaling. The presence of these logarithmic corrections in the
thermodynamics is related to a disorder-dependent logarithmic singularity that appears in the critical loop
distribution in the rescaled variable λ = l/N as λ → 1.

PACS. 64.60.-i General studies of phase transitions – 64.70.-p Specific phase transitions – 05.40.Fb
Random walks and Levy flights

1 Introduction

The effect of disorder on the wetting transition in dimen-
sion 1+1 has attracted a lot of interest in the last twenty
years and remains a rather controversial issue [1,2]. The
wetting model that we consider here is defined as follows.
The (impenetrable) substrate is located at z = 0. The
polymer chain has N monomers, and the position zα of
monomer (α) satisfies zα ≥ 0, with z1 = zN = 0. The
partition function of the model reads

Z =
∑

(RW )

e−βH (1)

where H =
∑N

α=1 εα δzα,0. In equation (1), the sum runs
over all random walks (RW) with |zα+1 − zα| = ±1 and
β = 1

kBT is the inverse temperature. The contact ener-
gies (εα) are independent quenched random variables. We
study here the binary distribution (ε = 0 with probability
p and ε = ε0 with probability 1 − p).

On the analytical side, efforts have focused on the
small disorder limit [1,2]. Since the pure wetting tran-
sition has a specific heat exponent αpure = 0, the disorder
is marginal according to the Harris criterion [3]. Based on
perturbative calculations, reference [1] finds a marginally
irrelevant disorder (i) the quenched and annealed critical
temperatures coincide (ii) the quenched critical properties
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are the same as in the pure (or annealed) case, up to sub-
dominant logarithmic corrections. Other studies have con-
cluded that that the disorder is marginally relevant [2,4,5]
(i) the quenched and annealed critical temperatures differ
by a term which has an essential singularity in the dis-
order strength [2] (ii) the critical behavior is governed by
some non-trivial disordered fixed point. On the numerical
side, the same debate on the disorder relevance took place.
Numerical studies for flat and exponential disorder distri-
butions [1], or for binary disorder distribution [6] have
concluded that the critical behavior was indistinguishable
from the pure transition. On the other hand, the numerical
study of [2] for binary disorder pointed towards a nega-
tive specific heat exponent (α < 0). Finally, the study of
Gaussian disorder [7] has been interpreted as an essential
singularity in the specific heat, that formally corresponds
to an exponent α = −∞. This paper aims at clarifying
the situation for the problem defined in equation (1), via
the analysis of loop statistics between two contacts with
the substrate.

2 Poland-Scheraga model of the wetting
transition

2.1 Model and observables

The wetting model of equation (1) is equivalent to the
Poland-Scheraga description of DNA denaturation [8,9].
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The relation between the two problems is made apparent
if one interprets the coordinate z as the relative coordinate
of the two DNA strands. We accordingly define a forward
partition function Zf(α) for a chain of α monomers, with
z1 = zα = 0. From equation (1) we get

Zf (α) = e−βεα

α−2∑

α′=1

Zf(α′)N (α′; α) (2)

where N (α′; α) is the the partition function of a loop going
from α′ to α. The asymptotic expansion of N (α′; α) is
given by [10]

N (α′; α) � σ0 2α−α′
f(α − α′) (3)

where σ0 is a constant and f(x) = 1
xc is the probability to

return to the substrate after x steps. In our model, c = 3
2 .

Other values of c are of interest in the DNA denaturation
problem [11]. In a similar way, we define a backward par-
tition function Zb(α), defined as the partition function of
a chain of N − α monomers, with zα = zN = 0, which
satisfies

Zb(α) = e−βεα

N∑

α′=α+2

Zb(α′)N (α; α′). (4)

In these notations, the partition function Z of equation
(1) is given by Z = Zf (N) = Zb(1), and the probability
for monomer α to be adsorbed on the substrate is

p(α) =
Zf (α)Zb(α)eβεα

Zf (N)
(5)

where the factor eβεα in the numerator avoids double
counting of the contact energy at α. The contact density
on the substrate (a quantity of primary importance in the
DNA context) is given by

θN (T ) =
1
N

N∑

i=1

p(α). (6)

In the pure case, θN (T ) is proportional to the energy. Since
this is not true in the disordered case, we also consider the
contact energy

eN(T ) =
1
N

N∑

i=1

εα p(α). (7)

We will also be interested in Ploop(α, γ), defined as the
probability of having a loop between monomers α and γ
on the substrate

Ploop(α, γ) =
Zf (α)N (α; γ)Zb(γ)

Zf (N)
. (8)

2.2 Numerical implementation

The above equations, explained in more detail in [12],
show that numerical calculations of the partition func-
tion Z will require a CPU time of order O(N2). The

Fixman-Freire method [13] reduces this CPU time to
O(N) by approximating the probability factor f(l) of
equation (3) by

f(l) =
1

l3/2
� fFF (l) =

I∑

i=1

ai e−bil. (9)

This method is very well known and widely used in biol-
ogy, since the standard program MELTSIM, which yields
melting curves of DNA sequences, uses the Fixman-Freire
scheme with I = 14 terms. This procedure has been tested
on DNA chains of length up to N = 106 base pairs [14,15].

Since the replacement (9) can be rather surprising for
physicists, we “justify” it in a more detailed way. One
point of view is to start with the integral representation
of the Γ function

1
lc

= limM→∞
1

Γ (c)

∫ M

0

dt tc−1 e−lt (10)

and to discretize it for L = Ml large (see e.g. [16]) as

1
Lc

= limm→∞
m∑

k=1

ak e−bkL. (11)

This shows that a power-law can be represented by a
discrete sum of exponentials if their number m, posi-
tions bk and weights ak are conveniently chosen. In the
Fixman-Freire procedure, the 2I coefficients (ai, bi) are
obtained from the fit on 2I points (l1, .., l2I) such that
(ln l1, ln l2, .., ln l2I) divide into equal intervals the domain
[ln lmin, ln lmax] where lmin and lmax are respectively the
minimal and maximal loop lengths that are needed in the
numerical program. The number 2I of coefficients is then
chosen to obtain the desired numerical accuracy. It turns
out that the choice I = 15 gives an accuracy better than
0.3%. We have adopted this value throughout this paper,
with the precise values of coefficients given in Table 1.
The reader is invited to draw the log-log plot of the curve
fFF (l) =

∑
i aie

−bil from lmin = 1 up to lmax = 8 × 105

(maximum value used in this paper): it turns out that is
indistinguishable from a straight line with slope −1.5.

Putting everything together, the model we have nu-
merically studied is defined by recursion equations (2, 4)
for the partition functions where the loop partition func-
tion N (α; α′) has been replaced by its asymptotic expres-
sion (3), with the Fixman-Freire approximation (Eq. (9))
for f(x).

3 Localization of the critical temperature

3.1 Loop statistics and Binder-like parameters

We now define the probability measure MN (l) for the
loops existing in a sample of length N as follows: for each
loop length l, we sum the loop probability Ploop(α, α + l)
(Eq. (8)) over all possible origins (α)

MN(l) =
N−l∑

α=1

Ploop(α, α + l) (12)
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Table 1. The coefficients list of the Fixman-Freire scheme
(Eq. (9)) used in this paper.

k ak bk

1 4.131402729674053 2.1862276200068984
2 0.7881006142917952 0.786562507425338
3 0.17595502399583498 0.28685203572841755
4 0.03840717039712677 0.10362190859974504
5 8.312412923528212 ×10−3 0.03731264430748273
6 1.7943964272375025 ×10−3 0.01342258297271051
7 3.87050019079018 ×10−4 4.826922241240929 ×10−3

8 8.346187454750269 ×10−5 1.735412099346865 ×10−3

9 1.7992608989224957 ×10−5 6.236378011282842 ×10−4

10 3.876492701067696 ×10−6 2.2381854284962953 ×10−4

11 8.337502375148752 ×10−7 8.002029885559757 ×10−5

12 1.7840276371399345 ×10−7 2.828612378598552 ×10−5

13 3.7562456645739374 ×10−8 9.658982900711821 ×10−6

14 7.45343477429276 ×10−9 2.9492060430056955 ×10−6

15 1.0919254377021306 ×10−9 5.872872655607268 ×10−7

The normalization of this measure over l corresponds
to the averaged number of loops in a sample of size N ,
or equivalently to the averaged number NθN (T ) of con-
tacts (6) with the substrate:

MN ≡
∫

dlMN(l) = NθN (13)

This number is thus extensive MN ∝ N in the localized
phase (T < Tc), and remains finite as N → ∞ in the
delocalized phase (T > Tc).

The first moment of the loop measure MN (l)

〈l〉N ≡
∫

dl lMN(l)∫
dlMN(l)

(14)

remains finite as N → ∞ in the localized phase (T < Tc),
whereas it diverges as 〈l〉N ∼ N in the delocalized phase
(T > Tc). We thus introduce the rescaled variable

λ =
l

N
(15)

and the corresponding probability measure MN(λ) for the
loops occupying a finite fraction λ = l/N of the whole
sample. This measure MN (λ) converges respectively in
the thermodynamic limit towards δ(λ) in the localized
phase (T < Tc) and towards δ(λ − 1) in the delocalized
phase (T > Tc). At the critical point T = Tc, MN (λ)
converges for large N towards a stable measure Mc(λ)
with support λ ∈ ]0, 1], in addition to a singular part in
δ(λ) whose weight represents the number of finite loops at
criticality.

To locate the critical temperature, it is thus convenient
to introduce the following Binder-like parameters [17]

BN (T ) =
〈l2〉
〈l〉N , RN (T ) =

〈l3〉〈l〉
〈l2〉2 (16)

where 〈l〉, 〈l2〉, 〈l3〉 are the first moments of the mea-
sure MN(l). In the thermodynamic limit N → ∞, the

parameter B∞(T ) jumps from B∞(T < Tc) = 0 to
B∞(T > Tc) = 1. For finite chain lengths (N1, N2, ...),
the ratios BN1(T ), BN2(T ) ... cross at Tc at some inter-
mediate value 0 < B(Tc) < 1 given by

B(Tc) =
〈λ2〉c
〈λ〉c (17)

where 〈λm〉c =
∫

dλ λm Mc(λ) are the moments of the
critical loop measure Mc(λ). The parameter RN (T ) has
a similar behavior with the following crossing value

R(Tc) =
〈λ〉c 〈λ3〉c

〈λ2〉2c
. (18)

Computerwise, the evaluation of the full loop distribu-
tion l = 1, .., N via equation (12) requires a time growing
as N2. To keep a computation time of order O(N), we
have chosen to sample the rescaled loop measure MN (λ)
on a fixed number kmax of values λk = k/kmax with
k = 1, 2, .., kmax. From this sampling of the loop distri-
bution, we define the reduced moments

〈λm〉kmax =
kmax∑

k=1

(
k

kmax

)m

MN

(
λk =

k

kmax

)
(19)

(20)

from which we build the modified Binder parameters

B
(kmax)
N (T ) =

〈λ2〉kmax

〈λ〉kmax

,

R
(kmax)
N (T ) =

〈λ3〉kmax〈λ〉kmax

〈λ2〉2kmax

(21)

whose properties are the same as the true Binder param-
eters (16) described above, except for the values of the
crossing points that now depend on kmax

B(kmax)(Tc) =
〈λ2〉c,kmax

〈λ〉c,kmax

,

R(kmax)(Tc) =
〈λ3〉c,kmax〈λ〉c,kmax

〈λ2〉2c,kmax

(22)

where

〈λm〉c,kmax =
kmax∑

k=1

(
k

kmax

)m

Mc

(
λk =

k

kmax

)
. (23)

We now illustrate these notions on the pure case, be-
fore we turn to the analysis of the disordered case.

3.2 Loop statistics in the pure case

In the (±1) random walk model (1) with a pure sub-
strate (εα = ε0), criticality corresponds to the condition
eβcε0 = 2 where the substrate is exactly reflexive [2]. The
reflexive nature of the substrate at criticality holds more
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Fig. 1. (a) The Binder parameter B
(kmax)
N (T ) of the pure case for kmax = 100 (©), 1000 (�), N

2
(∗) and chain lengths up to

N = 8 × 105. The measured crossing values at the common critical temperature Tc are in agreement with equations (22, 28)

which give 0.3612..(kmax = 100), 0.3413..(kmax = 1000), and 1
3

(kmax = N
2

). (b) The Binder parameter R
(kmax)
N (T ) of the pure

case for kmax = 100 (©), 1000 (�), N
2

(∗) and chain lengths up to N = 8× 105 . The measured crossing values at the common
critical temperature Tc are in agreement with equations (22, 28) which give 1.6699..(kmax = 100), 1.7584..(kmax = 1000), and
9
5

(kmax = N
2

).

generally for pure wetting models from a functional RG
analysis [18]. This means that the partition function ZN

with both ends fixed on the substrate is simply given by
the number of random walks returning to the origin after
N steps

Zpure
N (Tc) � 2N

√
N

. (24)

As a consequence, the critical loop measure (12) reads

MTc

N (l) �
√

N

l3/2

∫ N−l

1

dα√
α
√

N − l − α
�

√
N

l3/2
(25)

i.e. at criticality, there are
√

N loops, whose lengths are
distributed with the random walk first return probability

ρ(l) ∼ 1
l3/2

. (26)

In terms of the rescaled variable λ = l/N , the loop mea-
sure (25) becomes independent of the size N

Mc(λ) � 1
λ3/2

. (27)

This means that at criticality, there are a finite number
of loops whose length l represents a finite fraction of the
size N of the sample. This property can be understood as
follows: the Lévy sum of n independent random variables
distributed with (26) scales as l1 + l2 + ...ln ∼ n2: as a
consequence, the number n of loops scales with the size
N ∼ l1 + l2 + ...ln of the chain as n ∼ √

N . And for Lévy
sums, it is also well known that the maximal length lmax

among the n terms of the sum N ∼ l1 + l2 + ...ln actually
represents a finite fraction of the sum [19], i.e. the biggest
loops indeed occupy a finite fraction of the sample.

With the measure (27), the crossing values (17,18) are
B(Tc) = 1/3 and R(Tc) = 9/5. For our sampling pro-
cedure with kmax terms, the crossing values are given in

equation (22), where the moments (23) obtained from (27)
read

〈λm〉c,kmax =
kmax∑

k=1

(
k

kmax

)m−3/2

. (28)

We show in Figure 1 the results of our simulations
for the modified Binder parameters (21) for kmax = 100,
kmax = 1000, and compare them with the calculations
of the full Binder parameters (16), which correspond to
kmax = N

2 . The crossing temperature Tc is indeed inde-
pendent of kmax, and the crossing values are in agreement
with equation (22,28).

Let us now briefly describe the properties of the loop
measure off criticality. The finite-size scaling form of the
partition function ZN with both ends fixed on the sub-
strate is [20]

Zpure
N (T ) � 2N

√
N

Q
(
(T − Tc)

√
N

)
(29)

where the function Q(x) satisfies
(i) Q(x = 0) = 1 to recover the critical partition func-

tion (24).
(ii) Q(x → −∞) = −x ex2

that corresponds to the
localized phase

Zpure
N (T < Tc) �

N�1/(T−Tc)2
(Tc − T )2Ne(T−Tc)

2N . (30)

In this regime, the loop measure (12) reads

MT<Tc

N (l) �
N�1/(T−Tc)2

N(Tc − T )
e−(Tc−T )2l

l3/2
(31)

i.e. there exists an extensive number N(Tc − T ) of finite

loops distributed with ρloc(l) = e−(Tc−T )2l

l3/2 . The Binder pa-
rameters (16) thus converge as N → ∞ towards B∞(T <
Tc) = 0 and R∞(T < Tc) = 3.
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Fig. 2. Log-Log plot of the loop measure MT
N (λ) of the pure

case for N = 105 and N = 4 × 105, and T = Tc − 2 (loc),
Tc and Tc +2 (deloc). At Tc, the two curves are superimposed.
Above Tc, a minimum appears.

(iii) Q(x → +∞) = 1/x2 that corresponds to delocal-
ized phase [18,2]

Zpure
N (T > Tc) �

N�1/(T−Tc)2

2N

(T − Tc)2N3/2
. (32)

The factor 1/N3/2 means that the substrate becomes re-
pulsive in the delocalized phase [2,18]. In this regime,
the loop measure becomes concentrated on δ(λ − 1) and
the associated Binder parameters (16) converge towards
BN→∞(T > Tc) = 1 and RN→∞(T > Tc) = 1.

We show on Figure 2 the loop measures MT
N (λ) for

two sizes (N = 105 and N = 4 × 105), below, at and
above Tc. At Tc, the loop measure is independent of N and
corresponds to equation (27). Above Tc, an N -dependent
minimum shows up.

3.3 Disordered case

We have numerically studied the wetting transition for the
following binary distribution for the contact energies (εα)

P (εα) = (1 − p)δ(εα − ε0) + pδ(εα) (33)

with the three dilution fractions p = 0.25, p = 0.5 and
p = 0.75.

We have used the sampling method explained above for
the loop statistics with the factor kmax = 1000. We have
computed the modified Binder parameters B

(kmax)
N (T ) and

R
(kmax)
N (T ) (21), for each disorder sample, and for sizes

N = 105, 2 × 105, 4 × 105. Both quantities have been
then averaged over 104 independent samples (from now
on, A denotes the disorder average of the quantity A). The

crossing of B
(kmax)
N (T ) and R

(kmax)
N (T ) then yield reason-

able error bars in the localization of Tc (see Fig. 5).

0.000000 0.000010 0.000020 0.000030 0.000040
0.0

100000.0

200000.0

300000.0

400000.0

Fig. 3. Histogram over 104 disordered samples of MN (l =
N
2

) at criticality in the case p = 0.5, for sizes N = 105 (©),

2 × 105 (�), 4 × 105 (�).

3.3.1 Self-averaging properties

In disordered systems, extensive quantities are expected
to be self-averaging, because spatial averages in a given
sample are equivalent in the thermodynamic limit to dis-
order averages. For correlation functions, the situation is
more subtle, as discussed in details in [21] for spin-spin
correlations in magnetic systems. Since the loop measure
MN(l) (12) is a spatially averaged multiple point correla-
tion function, we have studied its self averaging properties.
We show in Figure 3 the histogram over 104 disordered
samples of MN(l = N

2 ) at criticality in the case p = 0.5,
for sizes N = 105, 2 × 105, 4 × 105: the distribution of
MN(l = N

2 ) over the samples is more and more peaked
around its average as N grows.

Concerning the crossing of Binder parameters, we have
also checked that averaging separately the moments in the
numerator and denominator in equations (16) gives the
same values as the averaged Binder parameters, e.g.

BN (T ) � 〈l2〉
〈l〉N . (34)

This property was also found for usual Binder parameters
in magnetic systems [22].

3.3.2 Binder parameters crossings

In Figure 4, we show the results for the averaged Binder

parameters B
(kmax)
N (T ) and R

(kmax)
N (T ) for sizes N =

1, 2, 4× 105. The numerical values at the crossing depend
on the dilution fraction p (33):

(i) for p = 0.25, we obtain B(kmax)(Tc) = 0.370±0.005
and R(kmax)(Tc) = 1.685±0.005. The critical temperature
Tc = 45.43± 0.03 is slightly below the annealed tempera-
ture Tann = 45.50 (here ε0 = −270).
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Fig. 4. (a) The averaged Binder parameter B(kmax)
N (T ), for kmax = 1000, (N = 105, 2 × 105, 4 × 105), and p =

0.25 (©), 0.5 (�), 0.75 (�). We have rescaled the contact energy ε0 so that the different Tc(p) are close. The error bars

are much smaller than the symbols. (b) The averaged Binder parameter R(kmax)
N(T ), for kmax = 1000, (N = 105, 2 × 105,

4 × 105), and p = 0.25 (©), 0.5 (�), 0.75 (�).
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Fig. 5. (a) The averaged Binder parameter B
(kmax)
N (T ) , for kmax = 1000 and N = 1, 2, 4, 8 · 105 and p = 0.5 (b) The averaged

Binder parameter R
(kmax)
N (T ), for kmax = 1000 and N = 1, 2, 4, 8 × 105 and p = 0.5.

(ii) for p = 0.5, where we have also studied N = 8×105,
we obtain B(kmax)(Tc) = 0.430± 0.005 and R(kmax)(Tc) =
1.547 ± 0.005, with Tc = 45.13 ± 0.03 as compared to the
annealed temperature Tann = 45.42. (here ε0 = −350).

(iii) for p = 0.75, we obtain B
(kmax)
N (Tc) = 0.550±0.005

and R
(kmax)
N (Tc) = 1.360 ± 0.005, with Tc = 45.15 ± 0.05

as compared to the annealed temperature Tann = 46.82
(here ε0 = −515).

These results show that the crossings of Binder pa-
rameters allows to locate precisely the critical tempera-
ture. We now turn to the analysis of critical properties of
various observables.

4 Study of critical properties

4.1 Distribution of loops of length l ∼ O(N)
at criticality

The crossings values (Bc, Rc) of the Binder parameters
vary continuously with the dilution fraction p (Fig. 4).
This means that the measure Mc(λ) of loops occupying
a finite fraction λ = l/N of the sample at criticality also
depends continuously on p. We present on Figure 6 these

loop measures Mc(λ) for p = 0.25, p = 0.5 and p =
0.75 in log-log plot, and compare them with the pure case
p = 0, which corresponds to the straight line (lnMc(λ) =
−(3/2) lnλ, Eq. (27)). In the limit λ → 0 (or lnλ → −∞),
the measures Mc(λ) become asymptotically parallel to the
pure case for all p, i.e.

Mc(λ) ∝
λ→0

1
λ3/2

(35)

(see also the more detailed study of finite loops below),
but otherwise, the loop measures in the disordered cases
are qualitatively different from the pure case: a minimum
occurs, followed by a weak divergence as λ → 1 (Fig. 6b).
The form of the divergence suggests that it is logarith-
mic with a p dependent exponent. The simplest form that
can represent the critical loop measure Mc(λ) on the full
interval 0 < λ < 1 and that is compatible with all our
data is

Mc(λ) � 1
λ3/2

(
1 +

C(p)
(− ln λ)δ(p)

)
. (36)

The values δ(p = 0.25) � 0.1, δ(p = 0.5) � 0.25 and
δ(p = 0.75) � 0.4 for the exponent δ, and the common
value C(p = 0.25) ∼ C(p = 0.5) ∼ C(p = 0.75) ∼ 6 for
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Fig. 6. (a) Log-Log plot of Mc(λ) for p = 0.25, 0.5, 0.75. The pure case p = 0 (solid black line) is shown for comparison (b)
Zoom near λ → 1.

the amplitude C give good fits of (i) the measures Mc(λ)
on the whole range λ ∈ [0, 1], with a correct location of
the p dependent minimum, and (ii) to the values of the
Binder parameters crossings shown in Figures 4 and 5.

Beyond this numerical evidence, it would be of course
interesting to have a theoretical explanation for the ap-
pearance of this logarithmic singularity in the loop mea-
sure near λ → 1 in the disordered case. The only qualita-
tive argument we can think of at this stage is the following:
in the pure case, we have seen that a minimum appears in
the loop measure in the delocalized phase (see Fig. 2). In
the disordered case, one may argue that the minimum of
the disordered averaged loop measure Mc(λ) at critical-
ity comes from the fact that at Tc, among the disordered
samples of size N , a fraction of these samples tend to be
slightly delocalized, with a minimum in their loop mea-
sure Mc(λ), whereas the other samples tend to be slightly
localized (see Fig. 7). In other words, if one imagines to
associate to each sample i a sample-dependent pseudo crit-
ical temperature T N

c (i), as it was done in other disordered
systems [23], the presence of the minimum at λmin < 1
reflects the spreading of the pseudo critical temperatures
T N

c (i) around the thermodynamic critical temperature Tc.
The fact that the exponent δ(p) grows with p could be in-
terpreted as a consequence of a growing dispersion of the
pseudo-critical temperatures T N

c (i) with the strength of
the disorder.

4.2 Measure of finite loops at criticality

In the section above, we have discussed the statistics of
loops of length l ∼ O(N). We now discuss the statistical
properties of finite loops, i.e. of length 1 � l � N . We
have measured the critical loop measure MN(l) for N =
1, 2, 4 × 105 with fixed values of l ( l = 10 k; k =
1, 2, ..., 1000). We obtain that the dependence in l is a
pure power law

MTc
N (l) ∝ 1

lγ(N)
(37)

with an effective exponent γ(N) which increases towards
the pure value 3/2 as N increases. For instance for p = 0.5,
we get γ(N = 105) � 1.46, γ(N = 2 × 105) � 1.468,

−3.0 −2.0 −1.0 0.0
−4.0

−2.0

0.0

2.0

4.0

6.0

Fig. 7. At criticality for the case p = 0.5: Log-Log plot of the
averaged loop measure Mc(λ) over 104 samples, as compared
to the loop measure of two particular samples. The upward
(resp. downward) oriented curve points towards a delocalized
(resp. localized) trend.

γ(N = 4 × 105) � 1.475. This power-law behavior with
exponent 3/2 is moreover in agreement with the asymp-
totic behavior (35) for loops of length O(N) in the limit
λ → 0, as it should, since the large l behavior of the fi-
nite loop measure MTc

N (l) should match the small λ → 0
behavior of O(N) loop measure Mc(λ). This requirement
actually determines the N -normalization of finite loops.
Indeed, we have obtained that at criticality, the measure
Mc(λ) of O(N) loops is independent of the size N and is
well described by the form (36). Via the change of variable
l = λN , this leads to the following normalization for the
loop critical distribution (37)

MTc
N (l) �

1�l�N

√
N

l3/2

(
1 +

C(p)
(ln N)δ(p)

)
(38)
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Fig. 8. (a) The Binder parameter BN (T − Tc) of the p = 0.5 case, for N = 105 (©), 2× 105 (�), 4× 105 (�) (b) Master curve

B
(
x = (T − Tc)

√
N

)
of equation (41) for the same data and symbols.

4.3 Contact density at criticality

As explained at the beginning, the contact density (6) is
directly related to the normalization of the loop measure
via (13). The result (38) for the normalization in N of the
loop measure thus yields the following finite-size behavior
for the contact density at criticality

θN (Tc)∝ 1√
N

(
1 +

C(p)
(ln N)δ(p)

)
(39)

i.e. the leading scaling behavior is the same as in the pure
case, but there are strong logarithmic corrections to scal-
ing. Plotting (

√
N θN (T )) for various N thus yields a

very poor determination of Tc, in marked contrast with
its precise location through the crossings of the Binder
parameters, where these logarithmic corrections are ab-
sent.

We have directly computed θN (Tc) for N = 105, 2×105

and 4 × 105, for p = 0.25, 0.5 and 0.75. Our results are
in agreement with equation (39), with the same values
of C(p) and δ(p) quoted above, just after equation (36).
This further supports the form (36) of the critical loop
distribution.

4.4 Energy at criticality

We now consider the contact energy (7). In the binary
case, it is closely related to the contact density (6), since
θN = eN

ε0
+ rN , where rN is the contact density of diluted

sites. At criticality, we expect that rN scales at most like
eN , which implies that the energy eN (Tc) has the same
finite size properties as θN (Tc), equation (39)

eN(Tc)∝ 1√
N

(
1 +

Ce(p)
(ln N)δ(p)

)
(40)

with a coefficient Ce(p) ≤ C(p). The direct measure of
the ratios eN (Tc)

θN (Tc)
increases very slowly with N , and typical

values for N = 2.105 are 0.87 (p = 0.25), 0.74 (p = 0.5)
and 0.6 (p = 0.75).

4.5 Finite-size scaling in the critical region

We are now interested into the finite-size scaling in the
critical region. In terms of the specific heat exponent
α, the singularity of the free-energy is f(Tc) − f(T ) ∼
(Tc − T )2−α. Via hyperscaling ( f(T ) ∼ 1/ξ(T ) in di-
mension d = 1), the correlation length along the interface
diverges as ξ(T ) ∼ 1/(Tc−T )2−α. According to finite-size
scaling theory, the appropriate rescaled variable is the ra-
tio N/ξ(T ) between the size N of the system and this
correlation length ξ(T ). As a consequence, we expect that
the Binder parameter BN (T ) obtained for various sizes N
actually only depend on the ratio N/ξ(T ) ∼ N(Tc−T )2−α

or equivalently

BN (T ) = B (
x = (T − Tc)Nφ

)
with φ =

1
2 − α

. (41)

We show on Figure 8 the master curve obtained with
crossover exponent φ = 1/2, corresponding to α = 0.

Considering now the finite size scaling for the energy,
equations (40) for the energy at Tc and the crossover ex-
ponent found in (41) suggest the following form

eN(T ) =
1√
N

[
G0((Tc − T )

√
N)

+
1

(ln N)δ(p)
G1((Tc − T )

√
N) + .....

]
(42)

where the ... represent higher order terms. Our conclusion
is that the critical exponents of the binary disordered case
are the same as those of the pure case, except for strong
corrections to scaling that are p dependent.

5 Conclusions and perspectives

We have studied the two dimensional wetting transition,
in the presence of binary disorder for various dilution frac-
tion p. Our analysis is based on the probability measure
for the loops of length l existing in a sample of size N , with
both ends of the chain fixed on the substrate. We have first
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shown how the introduction of Binder-like parameters,
built out of the first moments of the loop measure, allows
to locate precisely the critical temperature. We have then
found numerical evidence that the critical loop distribu-
tion Mc(λ) in the rescaled variable λ = l/N ∈ [0, 1] is not
a pure power law (in contrast with the pure case), but con-
tains a logarithmic divergence near λ → 1, with a p depen-
dent exponent δ(p). Finally, we have explained how this
singularity in the loop measure induces very strong loga-
rithmic corrections to scaling for the contact density, for
the energy, and more generally for thermodynamic quan-
tities.

Our present analysis of the binary disordered case
raises the question of the dependence of the critical behav-
ior on the disorder distribution. Indeed, we have obtained
that the critical loop distribution Mc(λ) varies continu-
ously with the dilution fraction p of the binary distribu-
tion. More generally, we might expect that Mc(λ) could
depend upon the disorder distribution itself. If this is the
case, do the critical exponents differ from those of the bi-
nary case? Since the example of Gaussian disorder [7] has
been interpreted in terms of essential singularities of the
Kosterlitz-Thouless type, we intend to study other types
of disorder distributions to clarify this issue.

Another interesting direction concerns the effect of dis-
order when the a priori loop entropy (3) in the Poland-
Scheraga formulation has an exponent c > 2, in which
case the pure transition is first-order [9]. Indeed, in the
context of the DNA denaturation transition, the bind-
ing transition between two pure self-avoiding chains on
a cubic lattice was found to be first order [24]. The the-
oretical explanation that has been proposed [11], is that
the self-avoidance constraint between denaturated loops
and the rest of the chain actually induces an exponent
c > 2 for the loop weight (3). The value c ∼ 2.11 has
been since measured in Monte-Carlo simulations [25]. In
the future, we hope to apply our method to the disordered
Poland-Scheraga model for the case c > 2, and to compare
with the results recently obtained by B. Coluzzi [26] via
Monte-Carlo simulations of self avoiding walks.

It is a pleasure to thank B. Coluzzi and J. Houdayer for useful
discussions, as well as H. Orland for many contributions over
the years.
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